INTRASPECIFIC VARIABILITY OF PHOTOSYNTHETIC TRAITS OF PINUS PONDEROSA SUBJECTED TO LONG-TERM EXPOSURE TO ELEVATED CO₂ James L.J. Houpis¹, James Pushnik³, David Anschel¹, Paul Anderson², & Richard Demaree³. ¹Lawrence Livermore National Laboratory, Livermore, CA 94550 ²USFS. Forest Science Lab., Rhinelander, WI 54501 ³Dept. of Biol. Sci., Calif. State Univ., Chico, CA 95929 It has been projected that the atmospheric concentration of CO₂ will double in the next century. This increase in ambient CO2 will have substantial impact on forest ecosystems. However, the database on the long-term effects of elevated CO2 on forest species is limited. Also, the extent of intraspecific variability in the response to elevated CO₂ remains largely unknown. We are investigating the effects of elevated CO₂ on the intraspecific variability of photosynthesis, quantum yield (as measured though chlorophyll fluorescence Fv/Fm ratio) and pigmentation in Pinus ponderosa. We obtained four-year-old Pinus ponderosa seedlings from nine different sources (either half-sibling or openpollinated) across California. These seedlings were then grown in standard 3m x 3m cylindrical outdoor exposure chambers for 16 months at either ambient levels of CO₂, ambient+175ppm CO₂, or ambient+350ppm CO₂. The seedlings were then measured for photosynthesis, chlorophyll fluorescence, and pigmentation. Chlorophyll fluorescence was measured using a Morgan CF1000 to determine Fv/Fm. Photosynthesis was measured with a LICOR 6200. Pigments were extracted using dimethylformamide (DMF). While the results show an increase in photosynthesis with increasing CO₂, both pigmentation and Fv/Fm decreased with increasing CO2. The results show a wide variability in response for all traits measured. Photosynthesis measured in the nine sources of seedlings ranged from 1.7 to 3.1 mol m⁻² s⁻¹ at ambient levels of CO_2 and ranged from 3.7 to 6.5 mol m⁻² s⁻¹ at ambient + 350ppm CO₂. The range in chlorophyll a was 11.5 to 15.0 g cm⁻² at ambient levels of CO₂ and ranged from 8.7 to 13.2 g cm⁻² at ambient + 350ppm CO₂. Quantum yield (Fv/Fm) response also showed a wide range of response with Fv/Fm ratios ranging from 0.72 to 0.78 at ambient levels of CO₂, and ranged from 0.73 to 0.77 at ambient + 350ppm CO₂. The source of *P. ponderosa* that had the greatest increase in photosynthesis (a source from the California Coast) had the least reduction in quantum yield (maintained Fv/Fm) and chlorophyll in the presence of elevated CO₂. This research was performed under the auspices of the U.S. Department of Energy at LLNL under contract W-7405-Eng-48.